Section 7.3: The Class NP

Basic Concepts

Define the following concepts:

(a) \(P \)

(b) \(NP \)

The Class NP

(CLR 36.2-1) Consider the language

\[
\text{GRAPH} - \text{ISOMORPHISM} = \{ \langle G_1, G_2 \rangle : G_1 \text{ and } G_2 \text{ are isomorphic graphs} \}.
\]

Prove that \(\text{GRAPH} - \text{ISOMORPHISM} \in \text{NP} \) by describing a polynomial-time algorithm to verify the language.

(CLR 36.1-4) Show that the class \(\text{NP} \) of languages is closed under union, intersection, concatenation, and Kleene star. Discuss the closure of \(\text{NP} \) under complement.

(CLR 36.1-5) Show that any language in \(\text{NP} \) can be decided by an algorithm running in time \(2^{O(n^k)} \) for some constant \(k \).

(CLR 36.1-8) Let \(\phi \) be a boolean formula constructed from the boolean input variables \(x_1, x_2, \ldots, x_k \), negations \((\neg) \), AND's \((\land) \), OR's \((\lor) \), and parentheses. The formula \(\phi \) is a *tautology* if it evaluates to 1 for every assignment of 1 and 0 to the input variables. Define \(\text{TAUTOLOGY} \) as the language of boolean formulas that are tautologies. Show that \(\text{TAUTOLOGY} \in \text{coNP} \).

(CLR 36.1-9) Prove that \(P \subseteq \text{coNP} \).

(CLR 36.1-10) Prove that if \(\text{NP} \neq \text{coNP} \), then \(P \neq \text{NP} \).